
INTEGRATED CIRCUITS

Product specification Supersedes data of 1998 Apr 28

2002 Mar 12

74LVC138A

FEATURES

- 5 V tolerant inputs for interfacing with 5 V logic
- Wide supply voltage range from 1.2 to 3.6 V
- CMOS low power consumption
- Direct interface with TTL levels
- Inputs accept voltages up to 5.5 V
- Complies with JEDEC standard no. 8-1A
- Demultiplexing capability
- Multiple input enable for easy expansion
- Ideal for memory chip select decoding
- Active LOW mutually exclusive outputs
- Output drive capability 50 Ω transmission lines at 125 °C
- Specified from –40 to +85 °C and –40 to +125 °C.

DESCRIPTION

The 74LVC138A is a high-performance, low-power, low-voltage, Si-gate CMOS device, superior to most advanced CMOS compatible TTL families.

The 74LVC138A accepts three binary weighted address inputs (A₀, A₁ and A₂) and when enabled, provides 8 mutually exclusive active LOW outputs (\overline{Y}_0 to \overline{Y}_7).

The 74LVC138A features three enable inputs: two active LOW (\overline{E}_1 and \overline{E}_2) and one active HIGH (E_3). Every output will be HIGH unless \overline{E}_1 and \overline{E}_2 are LOW and E_3 is HIGH.

This multiple enable function allows easy parallel expansion of the 74LVC138A to a 1-of-32 (5 to 32 lines) decoder with just four 74LVC138A ICs and one inverter. The 74LVC138A can be used as an eight output demultiplexer by using one of the active LOW enable inputs as the data input and the remaining enable inputs as strobes. Unused enable inputs must be permanently tied to their appropriate active HIGH or LOW state.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \text{ °C}$; $t_r = t_f \le 2.5 \text{ ns.}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PHL} /t _{PLH}	propagation delay	$C_{L} = 50 \text{ pF}; V_{CC} = 3.3 \text{ V}$		
	A_n to \overline{Y}_n		3.5	ns
	E_3 to \overline{Y}_n , \overline{E}_n to \overline{Y}_n		3.5	ns
CI	input capacitance		4.0	pF
C _{PD}	power dissipation capacitance per package	V_{CC} = 3.3 V; notes 1 and 2	21	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} + \Sigma(C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$

 $f_i = input frequency in MHz;$

 $f_0 = output frequency in MHz;$

 C_L = output load capacitance in pF;

 V_{CC} = supply voltage in Volts;

 $\Sigma(C_L \times V_{CC}^2 \times f_0)$ = sum of the outputs.

2. The condition is $V_I = GND$ to V_{CC} .

74LVC138A

ORDERING INFORMATION

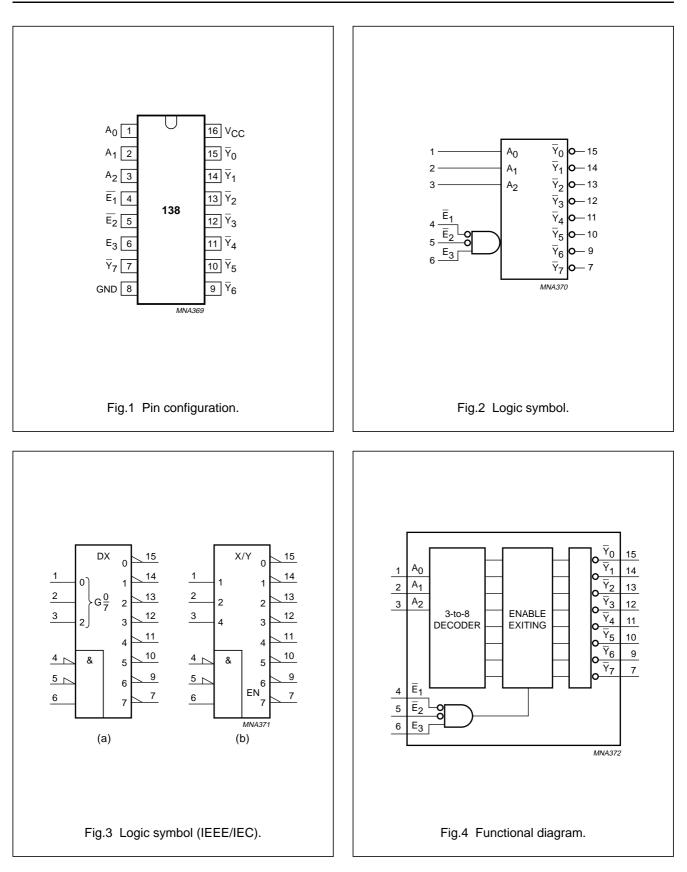
	PACKAGES								
	TEMPERATURE RANGE	PINS	PACKAGE	MATERIAL	CODE				
74LVC138AD	–40 to +125 °C	16	SO	plastic	SOT109-1				
74LVC138ADB	–40 to +125 °C	16	SSOP	plastic	SOT338-1				
74LVC138APW	–40 to +125 °C	16	TSSOP	plastic	SOT403-1				

FUNCTION TABLE

See note 1.

INPUTS							OUTI	PUTS					
Ē ₁	Ē2	E ₃	A ₀	A 1	A ₂	₹ ₀	\overline{Y}_1	\overline{Y}_2	\overline{Y}_{3}	\overline{Y}_4	\overline{Y}_5	\overline{Y}_{6}	Ϋ́ ₇
Н	Х	Х	Х	Х	Х	н	н	н	Н	Н	н	Н	Н
Х	Н	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
X	X	L	Х	Х	Х	н	н	н	Н	Н	н	Н	Н
L	L	Н	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
L	L	Н	Н	L	L	Н	L	Н	Н	Н	Н	Н	Н
L	L	Н	L	Н	L	н	Н	L	Н	Н	н	Н	Н
L	L	Н	Н	Н	L	Н	Н	Н	L	Н	Н	Н	Н
L	L	Н	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н
L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н
L	L	Н	L	Н	Н	Н	Н	Н	Н	Н	н	L	Н
L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

Note


1. H = HIGH voltage level;

L = LOW voltage level;

X = don't care.

PINNING

PIN	SYMBOL	DESCRIPTION
1, 2 and 3	A ₀ to A ₂	address input
4 and 5	$\overline{E}_1, \overline{E}_2$	enable input (active LOW)
6	E ₃	enable input (active HIGH)
7, 9, 10, 11, 12, 13, 14 and 15	\overline{Y}_7 to \overline{Y}_0	output
8	GND	ground (0 V)
16	V _{CC}	supply voltage

74LVC138A

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CC}	upply voltage for maximum speed performance		2.7	3.6	V
		for low voltage applications	1.2	3.6	V
VI	input voltage		0	5.5	V
Vo	output voltage	output HIGH or LOW state	0	V _{CC}	V
T _{amb}	operating ambient temperature		-40	+125	°C
t _r , t _f	input rise and fall times	V _{CC} = 1.2 to 2.7 V	0	20	ns/V
		V _{CC} = 2.7 to 3.6 V	0	10	ns/V

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CC}	supply voltage		-0.5	+6.5	V
I _{IK}	input diode current	V ₁ < 0	-	-50	mA
VI	input voltage	note 1	-0.5	+6.5	V
I _{OK}	output diode current	$V_{\rm O} > V_{\rm CC}$ or $V_{\rm O} < 0$	-	±50	mA
Vo	output voltage	output HIGH or LOW state; note 1	-0.5	V _{CC} + 0.5	V
lo	output source or sink current	$V_{O} = 0$ to V_{CC}	-	±50	mA
I _{GND} , I _{CC}	V _{CC} or GND current		-	±100	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	power dissipation per package				
	SO package	above 70 °C derate linearly with 8 mW/K	-	500	mW
	SSOP and TSSOP packages	above 60 °C derate linearly with 5.5 mW/K	_	500	mW

Note

1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

74LVC138A

DC CHARACTERISTICS

Over recommended operating conditions; voltages are referenced to GND (ground = 0 V).

		TEST CONDITIONS		Ta	_{mb} (°C)		T _{amb} (°	°C)	
SYMBOL	PARAMETER	071150		-40) to +85		-40 to +125		UNIT
		OTHER	V _{CC} (V)	MIN.	TYP. ⁽¹⁾	MAX.	MIN.	MAX.	1
VIH	HIGH-level		1.2	V _{CC}	-	-	V _{CC}	-	V
	input voltage		2.7 to 3.6	2.0	-	_	2.0	_	V
V _{IL}	LOW-level		1.2	-	-	GND	-	GND	V
	input voltage		2.7 to 3.6	-	-	0.8	-	0.8	V
V _{OH}	HIGH-level	$V_{I} = V_{IH} \text{ or } V_{IL}$							
	output voltage	I _O = −100 μA	2.7 to 3.6	V _{CC} – 0.2	V _{CC}	_	V _{CC} – 0.3	-	V
		I _O = –12 mA	2.7	V _{CC} – 0.5	_	_	V _{CC} – 0.65	_	V
		l _O = –18 mA	3.0	V _{CC} – 0.6	_	_	V _{CC} – 0.75	_	V
		I _O = –24 mA	3.0	V _{CC} – 0.8	_	_	V _{CC} – 1	_	V
V _{OL}	LOW-level	$V_{I} = V_{IH} \text{ or } V_{IL}$							
	output voltage	I _O = 100 μA	2.7 to 3.6	_	GND	0.2	-	0.3	V
		l _O = 12 mA	2.7	_	_	0.4	-	0.6	V
		l _O = 24 mA	3.0	_	_	0.55	-	0.8	V
l _l	input leakage current	$V_{I} = 5.5 V \text{ or GND}$	3.6	-	±0.1	±5	-	±20	μA
I _{CC}	quiescent supply current	$V_{I} = V_{CC} \text{ or GND};$ $I_{O} = 0$	3.6	-	0.1	10	_	40	μA
ΔI _{CC}	additional quiescent supply current per input pin	$V_{I} = V_{CC} - 0.6 V;$ $I_{O} = 0$	2.7 to 3.6	-	5	500	-	5000	μA

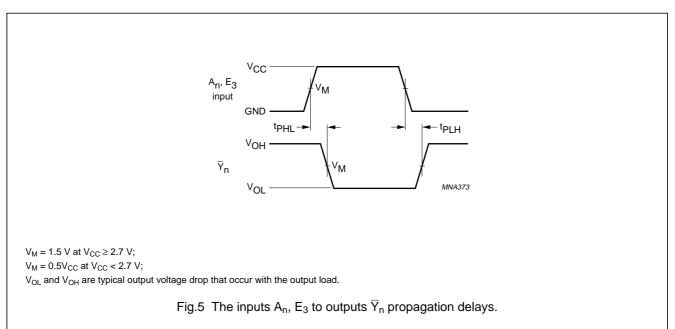
Note

1. All typical values are measured at V_{CC} = 3.3 V and T_{amb} = 25 °C.

74LVC138A

AC CHARACTERISTICS

GND = 0 V; $t_r = t_f \le 2.5$ ns.

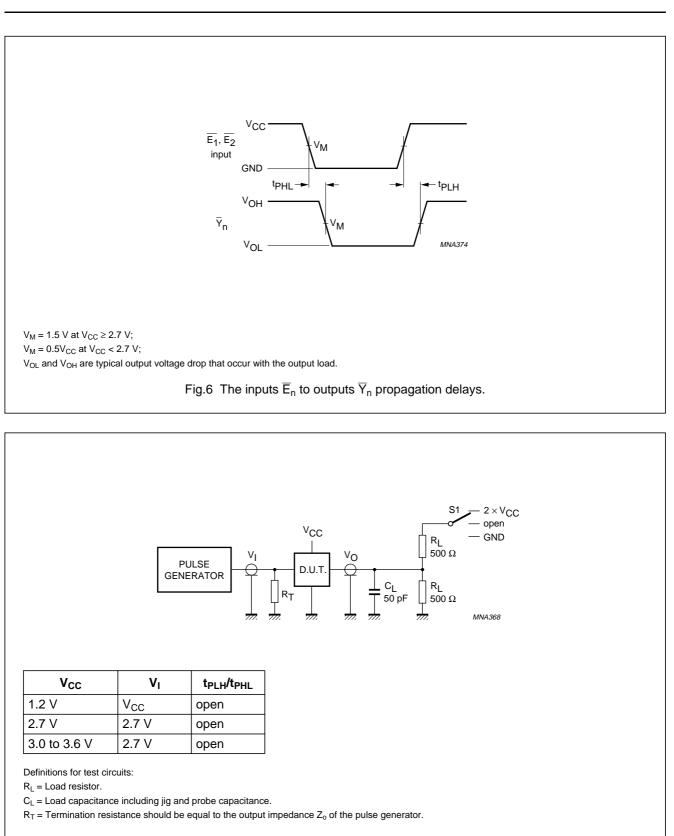

SYMBOL	PARAMETER	WAVEFORMS	-	–40 to +8	5	-40 to +125		UNIT
			MIN.	TYP. ⁽¹⁾	MAX.	MIN.	MAX.	
V _{CC} = 1.2 V								
t _{PHL} /t _{PLH}	propagation delay A_n to \overline{Y}_n	see Figs 5 and 7	-	14	-	-	-	ns
t _{PHL} /t _{PLH}	propagation delay E_3 to \overline{Y}_n	see Figs 5 and 7	-	14	_	_	_	ns
t _{PHL} /t _{PLH}	propagation delay \overline{E}_n to \overline{Y}_n	see Figs 6 and 7	-	15	-	-	-	ns
V _{CC} = 2.7 V	V	•		•	•			•
t _{PHL} /t _{PLH}	propagation delay A_n to \overline{Y}_n	see Figs 5 and 7	1.5	3.1	6.8	1.5	8.5	ns
t _{PHL} /t _{PLH}	propagation delay E_3 to \overline{Y}_n	see Figs 5 and 7	1.5	3.2	6.8	1.5	8.5	ns
t _{PHL} /t _{PLH}	propagation delay \overline{E}_n to \overline{Y}_n	see Figs 6 and 7	1.5	3.2	6.4	1.5	8.0	ns
$V_{CC} = 3.0 t$	V _{CC} = 3.0 to 3.6 V							
t _{PHL} /t _{PLH}	propagation delay A_n to \overline{Y}_n	see Figs 5 and 7	1.0	2.6	5.8	1.0	7.5	ns
t _{PHL} /t _{PLH}	propagation delay E_3 to \overline{Y}_n	see Figs 5 and 7	1.0	2.8	5.8	1.0	7.5	ns
t _{PHL} /t _{PLH}	propagation delay \overline{E}_n to \overline{Y}_n	see Figs 6 and 7	1.0	2.7	5.8	1.0	7.5	ns
t _{sk(0)}	skew	note 2	_	-	1.0	-	1.5	ns

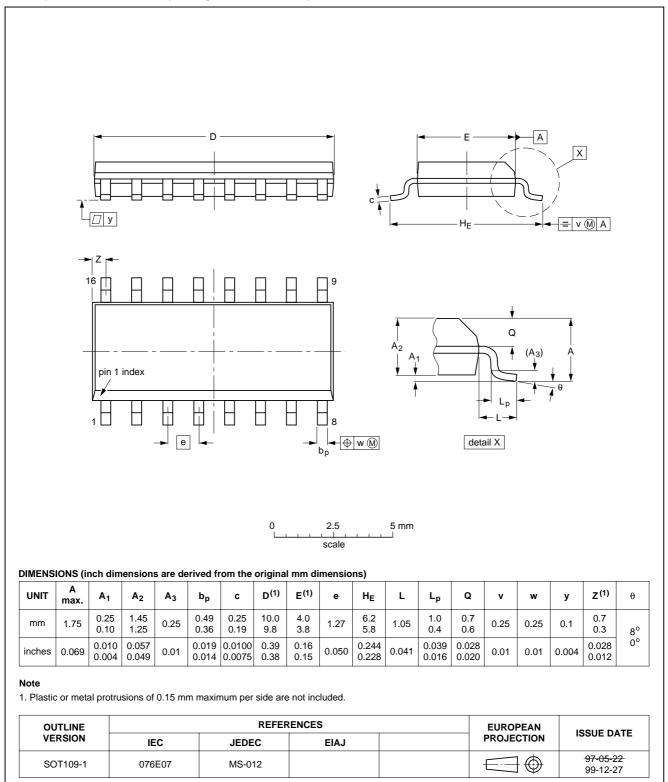
Notes

1. All typical values are measured at V_{CC} = 3.3 V.

2. Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by design.

AC WAVEFORMS




Fig.7 Load circuitry for switching times.

74LVC138A

3-to-8 line decoder/demultiplexer; inverting

PACKAGE OUTLINES

SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1

SSOP16: plastic shrink small outline package; 16 leads; body width 5.3 mm SOT338-1 А D Х = v 🕅 A HE Ζ 16 Q Α2 4 (A₃) A₁ pin 1 index L_p 8 detail X • (+) w (M) bp e 2.5 5 mm 0 scale DIMENSIONS (mm are the original dimensions) Α D⁽¹⁾ E⁽¹⁾ Z⁽¹⁾ UNIT $\mathbf{H}_{\mathbf{E}}$ Q **A**₁ A_2 A_3 С L Lp ۷ w у θ bp е max 8⁰ 6.4 6.0 5.4 5.2 0.9 0.7 0.20 7.9 1.03 1.00 0.21 1.80 0.38 mm 2.0 0.25 0.65 1.25 0.2 0.13 0.1 0.25 0° 0.05 1.65 0.09 7.6 0.63 0.55 Note 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. REFERENCES EUROPEAN PROJECTION OUTLINE VERSION ISSUE DATE IEC JEDEC EIAJ 95-02-04 \blacksquare SOT338-1 MO-150 99-12-27

2002 Mar 12

TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm SOT403-1 D А Е Х -11 П 🛛 у H_{E} = v 🕅 A ►Ζ Q (A₃) A_2 A_1 pin 1 index Lp 8 detail X • (+) w (M) bp е 2.5 5 mm 0 scale DIMENSIONS (mm are the original dimensions) Α D⁽¹⁾ E⁽²⁾ Z ⁽¹⁾ UNIT **A**1 θ A₂ A₃ H_{E} L Q w bp С е Lp v у max 6.6 6.2 0.15 0.95 0.75 0.40 8⁰ 0.30 0.2 4.5 4.3 0.4 5.1 mm 1.10 0.25 0.65 1.0 0.2 0.13 0.1 4.9 0.3 0.80 0.50 0° 0.05 0.19 0.1 0.06 Notes 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included. REFERENCES OUTLINE EUROPEAN ISSUE DATE VERSION PROJECTION IEC JEDEC EIAJ 95-04-04 \bigcirc SOT403-1 MO-153 99-12-27

SOLDERING

Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"Data Handbook IC26; Integrated Circuit Packages"* (document order number 9398 652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended.

Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 to 250 °C. The top-surface temperature of the packages should preferable be kept below 220 °C for thick/large packages, and below 235 °C for small/thin packages.

Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
 - larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
 - smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

• For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 $^\circ\text{C}.$

74LVC138A

Suitability of surface mount IC packages for wave and reflow soldering methods

PACKAGE	SOLDERING METHOD			
FACKAGE	WAVE	REFLOW ⁽¹⁾		
BGA, HBGA, LFBGA, SQFP, TFBGA	not suitable	suitable		
HBCC, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, HVQFN, SMS	not suitable ⁽²⁾	suitable		
PLCC ⁽³⁾ , SO, SOJ	suitable	suitable		
LQFP, QFP, TQFP	not recommended ⁽³⁾⁽⁴⁾	suitable		
SSOP, TSSOP, VSO	not recommended ⁽⁵⁾	suitable		

Notes

- 1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
- 2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
- 3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
- 4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
- 5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.

74LVC138A

DATA SHEET STATUS

DATA SHEET STATUS ⁽¹⁾	PRODUCT STATUS ⁽²⁾	DEFINITIONS
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

Notes

- 1. Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

74LVC138A

NOTES

Philips Semiconductors – a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2002

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

613508/03/pp16

Date of release: 2002 Mar 12

Document order number: 9397 750 09448

SCA74

Let's make things better.

Philips Semiconductors